Antiviral 2020 Round 1 Contest

1. What is the largest positive integer that can be made with five 3 s and one each of the four basic arithmetic operations (i.e.,,$+- \times, \div$)? (No brackets, exponents, concatenation, etc allowed).
2. We normally write our numbers in base 10; that is, each of our 10 digits represents powers of 10 , so that, for example, $157=7 \cdot 10^{0}+5 \cdot 10^{1}+1 \cdot 10^{2}$. Numbers can be written in other bases as well: computers use base 2 , or binary, so each digit represents a power of 2 :

$$
\begin{aligned}
10011101_{2} & =1 \cdot 2^{0}+0 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}+1 \cdot 2^{4}+0 \cdot 2^{5}+0 \cdot 2^{6}+1 \cdot 2^{7} \\
& =157
\end{aligned}
$$

Note that a subscript 2 is used to remind us that this number is in base 2.
What is the one-hundredth smallest positive integer that can be written using no digits other than 0 , 1 , and 2 in base 4 ?
3. Three identical circles of radius 2 are externally tangent and inscribed within a rectangle of length 12 and width 4 . Note that the shaded region represents the the portion of triangle $B C D$ that does not overlap with the circles. The area of this shaded region can be represented as $m-n \pi$, where m and n are positive integers. Find $m+n$.

4. In the diagram below (diagram not to scale), $A B C D$ is a square, Z is the midpoint of $B C, O Z \perp B C$ and $O Z=\frac{1}{2} A B$. X and Y are on $A B$ and $C D$, respectively, such that $A X=D Y$. It is known that the three enclosed regions $A D Y O X, B X O Z, C Z O Y$ have the same area. The value of $\frac{A X}{X B}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

5. How many tetrahedra with positive volume can be made using 4 distinct vertices of a cube?
6. Let a and b be positive integers, such that $\log _{\sqrt{2}} a$ is rational. If

$$
\log _{\sqrt{2}} a+\log _{a} b=\frac{\log _{\sqrt{2}} b}{2},
$$

then compute the sum of all possible values of $a+b$.

