Antiviral 2020 Round 3 Contest

1. Glenn bought a collection of Superman figurines. Each individual figurine costs the same amount of money, and Glenn paid $\$ 224$ in total. Unfortunately, one of the figurines has been chewed up by his dog, so he sold all of the remaining figurines for $\$ 4$ more each than he originally paid for them. Glenn managed to break even - he got back $\$ 224$. How many figurines did he originally buy?
2. If $x^{3}+9 x^{2}+3 x+3=1933$, what is the value of $5 x^{4}+3 x^{2}+9 x+8$?
3. The value of

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{50^{2}}\right)
$$

can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Find $a+b$.
4. In the diagram below (which is not to scale), $G F$ is the diameter of a semicircle centered at O. The semicircle is tangent to segment $A B$ at E and $B C$ at D. Triangle $A B C$ is right-angled at B and A, G, O, F and C all lie on the same line. We have $G O=O F=60$ and $F C=5$. Find the length of $A G$, shown as x in the diagram.

5. 13 wizards stand in a circle. 5 of these wizards are evil wizards, while the other 8 are non-evil. The evil wizards all simultaneously fire laser beams at some other randomly-chosen wizard. Each of the evil wizards may choose any other wizard, evil or non-evil, and two or more evil wizards may fire their lasers at the same other wizard. Two wizards may shoot each other, but wizards do not shoot themselves.
The probability that 3 of the wizards form the vertices of a laser-beam triangle can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
6. Real numbers a and b are chosen uniformly at random from the interval $[0,1]$.

The probability that

$$
\left\lfloor\log _{2}\left(\frac{1}{a+b}\right)\right\rfloor
$$

is odd can be written as $\frac{m}{n}$ where m and n are relatively prime integers. Find $m+n$.

